Facile Bond-forming and -breaking Process at Phosphorus, Carbon, and Oxygen Centres in Tungsten-Cobalt Complexes: X-Ray Crystal Structures of [WCo(O){ p-C(C6H4Me-4)C(0)}(p-PPh2)(CO)(PPh2H)(q-C5H5)], and the Novel Alkyne Complex [WCo(O){μ-C(C₆H₄Me-4)C(OMe)}(μ-PPh₂)(CO)(PPh₂H)(η-C₅H₅)][BF₄] [WCo(OH)(u-CC₆H₄Me-4)(u-PPh₂)₂(CO)₂(n-C₅H₅)],

El Amin E. El Amin, John C. Jeffery," and Tracy M. Walters

Department of *inorganic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.*

Treatment of the complex $[WCo_2(\mu_3-C6H_4Me-4)(CO)_8(\eta-C_5H_5)]$ with an excess of PPh₂CI results in cluster fragmentation and formation of the dimetal complex $[WCo(Cl)(\mu-Cc_6H_4Me-4)(\mu-PPh_2)_2(CO)_2(\eta-C_6H_5)]$ which is an important precursor to a range of related W-Co derivatives; the structures of the complexes $[WCo(OH)(\mu-CC_6H_4Me-4)(\mu-PPh_2)_{2}(CO)_2(\eta-C_5H_5)], [WCo(O)(\mu-C(C_6H_4Me-4)C(O))(\mu-PPh_2)(CO)(PPh_2H)(\eta-C_5H_5)],$ and $[WCo(O){\mu-C(C_6H_4Me-4)C(OMe)}({\mu\text{-}PPh_2})(CO)(PPh_2H)(\eta-C_5H_5)][BF_4]$ have been determined by X-ray diffraction and the latter complex exhibits an unusual alkyne bonding mode.

We have previously reported that treatment of the complexes $[MO_2(\mu_3\text{-}CC_6H_4\text{Me-4})(CO)_8(\eta\text{-}C_5H_5)] [M = W (1)$ or Mo¹
or $[WFe_2(\mu_3\text{-}CC_6H_4\text{Me-4})(\mu\text{-}CO)(CO)_8(\eta\text{-}C_5H_5)]^2$ with $[WFe₂(\mu₃-CC₆H₄Me-4)(\mu-CO)(CO)₈(\eta-C₅H₅)]²$ secondary phosphine ligands provides an efficient route for the synthesis of trimetal complexes with bridging μ -PR₂ and hydride ligands. We have now extended this approach to include the reactions of PPh₂Cl in the hope of obtaining related heterotrimetal complexes with chloride ligands replacing the hydride ligands. In fact, the reaction of (1) with PPh₂Cl affords a dimetal chloro-complex which is a precursor to a range of novel hydroxy and 0x0 W-Co dimetal species.

Treatment of the heterotrimetal complex **(1)** with an excess (3 equivs.) of PPh₂Cl (CH₂Cl₂, 42 °C) causes cluster fragmentation and following chromatography on dry alumina, moderate yields *(ca.* 50%) of the bright yellow dimetal complex $[WCo(C)](\mu$ -C₆H₄Me-4) $(\mu$ -PPh₂)₂(CO)₂(η -C₅H₅)] (2) were $isolated$ (Scheme 1). Compound (2) is very sensitive to hydrolysis and if the former reaction mixture is chromatographed on deactivated alumina the related orange hydroxy derivative $[WCo(OH)(\mu-CC_6H_4Me-4)(\mu-PPh_2)_2(CO)_2(\eta-$ C5Hs)] **(3)** is obtained in similar yields. The structure of **(3)** was established by a single crystal X -ray diffraction study? (Figure 1) which shows a W-Co dimetal alkylidyne complex with two symmetrically disposed μ -PPh₂ ligands and a hydroxy ligand attached to the W atom. Spectroscopic data‡ for (2) and **(3)** are very similar and are consistent with the solid state structure established for **(3).** In the 1H NMR spectra, steric crowding about the W-Co bond leads to unusually shielded chemical shifts for the *ortho*-protons of the C_6H_4Me-4 ligand which are constrained to lie in the face of phenyl rings of the μ -PPh₂ ligands.

In solution the hydroxy complex **(3)** slowly (10 h, 20°C) isomerises to the sterically less crowded 0x0 complex $[WCo(O) \{\mu-C(C_6H_4Me-4)C(O)\}(\mu-PPh_2)(CO)(PPh_2H)(\eta-$

```
\ddagger All compounds have been fully characterised by elemental analysis
and spectroscopy. Only selected spectroscopic data are given. Unless 
otherwise noted IR spectra were measured in CH<sub>2</sub>Cl<sub>2</sub> and NMR spectra
in CD_2Cl_2 or CH_2Cl_2-CD_2Cl_2. Coupling constants in Hz, chemical
shifts in p.p.m. relative to SiMe<sub>4</sub> [<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}] or external H<sub>3</sub>PO<sub>4</sub>
[{}^{31}P{^1H}]. Compound (2): yellow crystals, v_{\text{max}} (CO) at 2020 s and
1976 s cm<sup>-1</sup>; NMR: <sup>1</sup>H, \delta 4.86 [d, 2 H, C(2) and C(6) of C<sub>6</sub>H<sub>4</sub>Me-4,
511, 210.0,207.2 (2 x 3, br., CoCO). Compound (3): orange crystals, 
vmdx (CO) at 2010 s and 1967 s cm-I: NMR: 'H, b 4.83 (d. 2 H, C(2) 
and C(6) of C<sub>6</sub>H<sub>4</sub>Me-4, J(HH) 8]; <sup>31</sup>P{<sup>1</sup>H}, \delta 93.7 (\mu-PPh<sub>2</sub>); <sup>13</sup>C{<sup>1</sup>H},
\delta 326.0 [t, \mu-CR, J(PC) 51], 210.5 (br., CoCO), 208.4 [t, CoCO, J(PC)
1 11. Compound (4): dark-red crystals. v,,,, (CO) at 1958 s and 1714m 
cm<sup>-1</sup>; NMR: <sup>1</sup>H, \delta 5.53 [d, 1 H, PPh<sub>2</sub>H, J(PH) 291]; <sup>31</sup>P{<sup>1</sup>H}, \delta 186.5
(br., \mu-PPh<sub>2</sub>), 46.4 (br., PPh<sub>2</sub>H); <sup>13</sup>C(<sup>1</sup>H), \delta 219.3 [d, \mu-CRC(O),
J(PC) 5], 218.1 (br., CoCO), 142.3-127.8 [µ-C(R)C(O), C<sub>6</sub>H<sub>5</sub>,
C_6H_4. Compound (5): yellow crystals, v_{\text{max}} (CO) at 2032 s and 1995 s
cm<sup>-1</sup>; NMR: <sup>1</sup>H, \delta 4.93 [d, 2 H, C(2) and C(6) of C<sub>6</sub>H<sub>4</sub>Me-4, J(HH)
208.7 (br., CoCO), 205.8 [t, CoCO, J(PC) 121. Compound (6): red 
crystals, v_{\text{max}} (CO) at 2058 s, 2026 s, and 1937 m cm<sup>-1</sup>: NMR:
31\text{P}{<sup>1</sup>H}, \delta 167.5 (br., \mu-PPh<sub>2</sub>), -5.9 [br., \mu-C(R)PPh<sub>2</sub>]; <sup>13</sup>C{<sup>1</sup>H}, \delta231.7 [WCO. J(WC) 1531, 199.1, 196.3 (2 x s. br., CoCO), 
145.0-122.9 [\mu - C(R)PPh_2, C_6H_5, C_6H_4]. Compound (7): orange
crystals, v,,, (CO) at 2028 s and 1978 s cm-I: NMR: 31P{1H}, 6 99.2 
J(HH) 8]; {}^{31}P\{{}^{1}H\}, \delta 79.4 (\mu-PPh<sub>2</sub>); {}^{13}C\{{}^{1}H\}, \delta 335.3 [t, \mu-CR, J(PC)
8]: {}^{31}P\{ {}^{1}H\}, \delta 84.8 (\mu-PPh<sub>2</sub>); {}^{13}C\{ {}^{1}H\}, \delta 336.8 [t, \mu-CR, J(PC) 51].
[d, \mu-PPh<sub>2</sub>, J(PP) 88], 36.7 [d, PPh<sub>2</sub>H, J(PP) 88]; <sup>13</sup>C{<sup>1</sup>H}, \delta 343.7
[dd, \mu-CR, J(PC) 17, 15], 209.8 [dd, CoCO, J(PC) 12, 12], 198.7 [dd,
CoCO, J(PC) 15, 15]. Compound (8a): orange crystals, v_{max} (CO) at
2000 s cm-1; NMR: 'H, 6 2.29 (s, 3 H, Me-4), 4.57 (s, 3 H, OMe): 
31P({}^{1}H), \delta 221.5 (br., \mu-PPh<sub>2</sub>), 47.8 (br., PPh<sub>2</sub>H); 13C({}^{1}H), \delta 239.3
[d, p-CRC(OMe), J(PC) 291, 214.4 [d, CoCO, J(PC) 121, 139.6- 
126.6 [\mu-C(R)C(OMe), C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>4</sub>], 68.0 (OMe), 21.4 (Me-4).
Compound (8b): orange crystals, v_{\text{max}} (CO) at 2000 s cm<sup>-1</sup>; NMR:
<sup>1</sup>H, \delta 2.52 (s, 3 H, Me-4), 4.09 (s, 3 H, OMe); <sup>31</sup>P{<sup>1</sup>H}, \delta 195.2 (br..
\mu-PPh<sub>2</sub>), 41.8 (br., PPh<sub>2</sub>H); <sup>13</sup>C{<sup>1</sup>H}, \delta 220.6 [d, \mu-CRC(OMe),
J(PC) 12], 204.7 [d, CoCO, J(PC) 12], 139.6-126.6 [µ C(R)C(OMe),
C6HS, C6H4], 68.8 (OMe), 21.2 (Me-4). Compound (9): red crystals, 
vmdX (CO) at 1909 s cm-I; NMR: IH, 6 2.39 (s, 3 H, Me-4), 3.08 (s, 3 
H, OMe); {}^{31}P{^1H}, \delta 189.9 (br., \mu-PPh<sub>2</sub>), 27.1 [br.,
μ-C(R)C(OMe)PPh<sub>2</sub>]; <sup>13</sup>C{<sup>1</sup>H}, δ 214.1 (br., CoCO), 189.7 [d,
\mu-C(R)C(OMe)PPh<sub>2</sub>, J(PC) 42], 150.6–124.3 [\mu-C(R)C(OMe)PPh<sub>2</sub>,
C_6H_5, C_6H_4, 60.9 (OMe), 21.1 (Me-4).
```
t Crystal data for (3): $C_{39}H_{33}CoO_3P_2W$, $M = 854.4$, monoclinic, space group $P2_1/c$ (no. 14), $a = 20.878(3)$, $b = 9.045(2)$, $c = 20.715(3)$ Å, $\beta = 116.98(2)^\circ$, $U = 3486(1)$ \mathring{A}^3 , $Z = 4$, $D_c = 1.63$ g cm⁻³, $F(000) = 1688$, $\mu(Mo-K_{\alpha}) = 40.3$ cm⁻¹, $R = 0.037$ $(R_{\rm w} = 0.038)$ for 4499 unique absorption corrected intensities [298 K, ω -scans, $2\theta \le 50^\circ$, *F* $\geq 5\sigma(F)$, Mo-K_a ($\bar{\lambda} = 0.71069$ Å)]. For (4): $C_{39}H_{33}CoO_{3}P_{2}W$, $M = 854.4$, orthorhombic, space group $P2₁nb$ (non-standard setting of *Pna*2₁ no. 33), $a = 10.648(1)$, $b = 20.107(3)$, $c = 16.036(2)$ Å, $U = 3433.1(7)$ \mathring{A}^3 , $Z = 4$, $D_c = 1.65$ g cm⁻³, $F(000) = 1688$, μ (Mo- K_{α}) = 40.3 cm⁻¹, $R = 0.026$ ($R_w = 0.027$) for 2925 unique absorption corrected intensities $[298 \text{ K}, \theta - 2\theta \text{ scans}, 2\theta \le 50^\circ, F \ge 4\sigma(\overline{F}),$ Mo- K_{α} ($\bar{\lambda}$ = 0.710 69 Å)]. For (8a).(1/2CH₂Cl₂).(1/2Et₂O): $C_{40}H_{36}BCoF_4O_3P_2W \cdot (1/2CH_2Cl_2) \cdot (1/2Et_2O)$, $M = 1035.8$, monoclinic, space group $I2/a$ (non-standard setting of space group $C2/c$ no. 15), $a = 12.282(4)$, $b = 17.918(5)$, $c = 39.497(8)$ Å, $\beta = 89.95(2)$ °, $U = 8671(4)$ \AA^3 , $Z = 8$, $D_c = 1.59$ g cm⁻³, $F(000) = 4112$, $\mu(\text{Mo}=K_{\alpha}) = 32.8 \text{ cm}^{-1}, R = 0.041 (R_{w} = 0.044) \text{ for } 4190 \text{ unique}$ absorption corrected intensities [298 K, WycKoff ω -scans, 2 $\theta \le 45^\circ$, *F*
 $\ge 5\sigma(F)$, Mo-K_{α} ($\bar{\lambda} = 0.71069$ Å)]. Data were collected on Nicolet P3 or P2, diffractometers and the structures were solved by heavy atom and difference-Fourier methods. The structures were refined by blocked-cascade or full-matrix least-squares procedures using the SHELX system of programs. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Ph₂

 $(8a)$

OMe

 Br_{4}]

L

Co(CO),

 (1)

 $cp = \eta$ -C₅H₅

Co(CO)₃

cp(OC)₂W

Scheme 1. i. PPh₂Cl, 42°C, -CoClL_n; ii, deactivated alumina; iii, 10 h, 20°C; iv, HBF₄.Et₂O; v, -H₂O; vi, +CO; vii, Me₃OBF₄; viii, base.

CsH5)] **(4).** Formation of **(4)** involves migration of a hydrogen atom from the hydroxy ligand to a μ -PPh₂ group, together with coupling of a \overrightarrow{CO} ligand and the μ -CR group to give a bridging ketenyl $\{\mu(C(R)C(O)\}\)$ moiety. The structure of (4) was confirmed by a single crystal X -ray diffraction study (Figure 2).^{$+$} The W–Co [2.584(1) Å] and W–O [1.709(6) Å] separations in **(4)** are shorter than found in the precursor **(3)** [W-Co 2.594(1) and W-OH 2.087(6) Å] which is consistent with the presence of appreciable W=Co and W=O multiple bond character.

Protonation of the complex (3) $(CH_2Cl_2, HBF_4·Et_2O)$ occurs at the hydroxy ligand leading to loss of H₂O and formation of the symmetric co-ordinatively unsaturated cation $[WCo(\mu - CC_6H_4Me-4)(\mu - PPh_2)_2(CO)_2(\eta - C_5H_5)][BF_4]$ (5). Apart from appropriate chemical shift changes, NMR spectroscopic data for *(5)* are similar to those of the parent complex **(3).\$** Treatment of *(5)* with CO promotes coupling of the μ -CR ligand with one of the μ -PPh₂ groups, quantitatively affording the μ -C(R)PPh₂ derivative [WCo{ μ -C(C₆H₄Me-4)PPh₂)(μ -PPh₂)(CO)₃(η -C₅H₅)][BF₄] (6), a rare example of a complex with a phospha-alkyne ligand bridging a dimetal centre.3

Protonation of the isomeric, co-ordinatively unsaturated complex **(4)** $(CH_2Cl_2, HBF_4·Et_2O)$ occurs at the oxo ligand and the resulting loss of electron density at W promotes cleavage of the μ -C(R)-C(O) bond affording the hydroxy-
alkylidyne cation $[WCo(OH)(\mu$ -CC₆H₄Me-4)(μ -PPh₂)alkylidyne cation $[WCo(OH)(\mu-CC_6H_4Me-4)(\mu-PPh_2)$ - $(CO)₂(PPh₂H)(\eta-C₅H₅)[[BF₄] (7).$ The presence of the μ -CR ligand in **(7)** was readily established by the observation of a characteristic signal for the μ -CR ligand at δ 343.7 [dd, μ -CR, J(PC) 17, 15 Hz]. The complex **(7)** shows no tendency to lose H20 to form *(5)* and unlike the latter complex does not react with CO.

In marked contrast, methylation (Me30BF4) of **(4)** occurs at the oxygen centre of the μ -C(R)C(O) ligand leading to the formation of the methoxy-alkyne complex $[WCo(O)]$ - $\{\mu\text{-}C(C_6H_4Me\text{-}4)C(OMe)\}\{\mu\text{-}PPh_2(CO)(PPh_2H)(\eta\text{-}C_5H_5)\}-$ [BF4] **(8).** In solution, NMR spectroscopic data show that **(8)** exists as a mixture of two isomers **[(sa)** : **(8b)** 4 : 11 which slowly interconvert on the NMR time scale. **A** single crystal X-ray diffraction study shows that isomer **(8a)** is favoured in the solid

Figure 1. Molecular structure of $[WCo(OH)(\mu$ - $CC₆H₄Me-4)(\mu$ - $PPh_2_2(CO_2(\eta - C_5H_5))$ (3). Bond lengths and angles: W-Co 2.594(1), 1.936(8), Co-P(l) 2.210(2), Co-P(2) 2.212(2), Co-C(60) 2.001(7) *I\$;* W-P(1) 2.423(2), W-P(2) 2.417(2), W-0 2.087(6), W-C(60) Co-W-C(60) 49.9(2), W-Co-C(60) 47.7(2), W-C(60)-Co 82.4(3), W-P(1)-Co 67.9(1), W-P(2)-Co 68.0(1)°.

Figure 2. Molecular structure of $[WCo(O)] \mu-C(C_6H_4Me-4)C(O) \mu$ **PPh,)(CO)(PPh2H)(q-CgHs)] (4).** Bond lengths and angles: W-Co 2.584(1), W-P(l) 2.427(2), W-0 1.709(6), W-C(10) 2.101(6), *CO-*1.922(6), C(9)-C(10) 1.39(1), P(2)-H(1) 1.27(6) A; Co-W-C(10) $68.8(1)$ °. $P(1)$ 2.125(2), Co- $P(2)$ 2.231(2), Co-C(10) 2.026(6), Co-C(9) 50.0(2), W-Co-C(10) 52.5(2), W-C(10)-Co 77.5(2), W-P(1)-Co

state (Figure **3).7** The alkyne adopts an extremely novel bonding mode. The ligated carbon atom carrying the tolyl substituent bridges the W-Co bond $[W-C(1)]2.108(9)$ and Co-C(1) 2.057(9) \AA] whilst the methoxy substituted end of the

Figure 3. Molecular structure of $[WC_0(O)]$ μ -C(C_6H_4Me -4)- $C(OME)$ $(\mu$ -PPh₂) $(CO)(PPh_2H)(\eta$ -C₅H₅ $)$ $[BF_4]$ **(8a).** Bond lengths and angles: W-Co 2.612(1), W-P(1) 2.410(2), W-O(5) 1.710(6), $Co-C(1)$ 2.057(9), $Co-C(2)$ 1.806(9) Å; $Co-W-C(1)$ 50.3(2), W-Co- $W-C(1)$ 2.108(9), $W-C(2)$ 2.764, $Co-P(1)$ 2.153(3), $Co-P(2)$ 2.209(3), C(1) 52.0(3), W-C(1)-Co 77.7(3), W-P(1)-Co 69.6(1), W-C(1)-Co 77.7(3), W-C(1)-C(2) 103.3(6), Co-C(1)-C(2) 59.7(5), W-C(1)-C(51) 129.7(6), Co-C(1)-C(51) 134.6(6), C(2)-C(1)-C(51) 125.6(8), $Co-C(2)-C(1)$ 79.5(6), $Co-C(2)-O(2)$ 150.8(8), C(1)-C(2)-O(2) 129.4(9)°. The position of the P(2)-H hydrogen atom was obtained from a final electron density difference synthesis but was not refined.

alkyne is bound only to the Co metal centre [Co-C(2) 1.806(9) and $W \text{-}C(2)$ 2.764 Å]. The resulting bonding mode is thus intermediate between the well established transverse **(A)** and in-plane (B) alkyne bonding modes shown in Scheme 2.

Deprotonation (NaOMe-MeOH) of the mixture of isomers **(8a,b)** proceeds smoothly, affording the neutral complex $[WCo(O) \{\mu-C(C_6H_4Me-4)C(OMe)PPh_2\}(\mu-PPh_2)(CO)$ - $(\eta$ -C₅H₅)] **(9)**. Spectroscopic data for **(9)** suggest a structure in which the alkyne ligand and a $PPh₂$ moiety have coupled to form a μ -C(C₆H₄Me-4)C(OMe)PPh₂ group.

These studies demonstrate that fundamental P-C and C-C bond making and breaking reactions can occur under extremely mild conditions at W-Co dimetal centres.

We thank the University **of** Khartoum for a scholarship and the CVCP for an ORS award (El Amin).

Received, 4th October 1989; Corn. 9104260A

References

- 1 P. Dunn, J. C. Jeffery, and P. Sherwood, *J. Organomet. Chem.* , 1986, **311,** C55; M. R. Bradford, N. G. Connelly, N. C. Harrison, and J. C. Jeffery, *Organometallics,* 1989, **8,** 182.
- 2 J. C. Jeffery and J. G. Lawrence-Smith, *J. Chem.* SOC., *Chem. Commun.* , 1986, 17; *J. Chem. SOC., Dalton Trans.,* in the press.
- 3 **S.** J. Davies, J. **A.** K. Howard, **M.** U. Pilotti, and F. G. **A.** Stone, *J. Chem. SOC., Chem. Commun.,* 1989, 190.